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ABSTRACT
Mobile push-notifications are the primary mechanism for communi-
cating new information to smartphone users, however they can also
have a negative impact on user emotions, reduce work effectiveness
and decrease current task performance. Through analysing state-
of-the-art research on mobile Notification Management Systems,
it was identified that few open-source notification data sets and,
corresponding benchmarks, have been created and the majority of
NMSs apply supervised learning methods. This paper investigates
the use of a, freely shareable, synthetic mobile notification data
set for developing and evaluating NMS performance using Rein-
forcement Learning. A Q-learning and Deep Q-learning agent were
trained using synthetic data and an OpenAI Gym environment was
created for evaluation. Final results illustrated that the Q-learning
and Deep Q-learning agents could predict a users action toward
notifications with ≈80% success when trained and evaluated upon
real or synthetic data and ≈65% success when trained on synthetic
and evaluated upon real notification data.

CCS CONCEPTS
• Computing methodologies→ Intelligent agents; Simulation
environments; • Human-centered computing → User models;
Ubiquitous and mobile computing design and evaluation methods.
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1 INTRODUCTION
Notifications are one of the main methods employed by a number
of applications and technologies for re-engaging with, and com-
municating new information to, end-users [10]. As mobile devices
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are inherently ubiquitous and tend to remain within reach of their
owners throughout the day [19], the potential for disruption from
mobile push-notifications is much higher than from other notifi-
cation sources such as desktop computers [15]. For this reason,
recent research [1, 3, 7, 8, 11–13, 18] has been conducted on mobile
Notification Management Systems (NMS) which aim to block or
delay notifications which are not seen as useful or desired, while
still allowing important notifications to be delivered immediately.
Currently the majority of these state-of-the-art systems are trained
using real user notification data collected in-the-wild and imple-
ment some form of supervised learning.

A current issue hampering development of these systems is the
lack of readily available mobile notification data sets collected in-
the-wild from real users [4]. The reasons for this are due to the
highly private and sensitive information contained within notifica-
tions, which often include location, message content and mobile
sensory information. Previous research [4–6] has been conducted
into generating synthetic notification data sets which do not con-
tain sensitive information but provide useful features for designing
and evaluating mobile NMS. One of the goals of this work was
to avail of synthetic notification generation methods to evaluate
other areas of machine learning for designing mobile NMS, such as
Unsupervised and Reinforcement Learning (RL), without the need
to curate software and conduct an in-the-wild data collection study.
As such, this paper aims to determine the effectiveness of a mobile
NMS through implementation of two RL methods, Q-Learning and
Deep Q-Learning. This was achieved through the training, evalu-
ation and comparison of RL agents over both synthetic and real
in-the-wild mobile notification data sets procured and developed in
other recent work.

This paper is structured as follows: section 2 details current
state-of-the-art work in the area of push-notifications and NMSs;
section 3 outlines this paper’s proposed RL approach to mobile noti-
fication management and use of synthetic data; section 4 discusses
various experiments executed to evaluate the proposed solution
and highlights the main results and findings; and finally section 6
offers a brief summary of the paper.

2 RELATEDWORK
Prior to research exploring mobile push-notifications, extensive
work was conducted in the area of desktop notifications and their
associated effect on users [19]. However, attention has since shifted
toward mobile due to its increasing ubiquity and levels of wide-
spread adoption resulting in a high quantity of notifications deliv-
ered to users daily. Users receive around 60 notifications per day on
average and a large proportion, 20% to 50%, of these notifications
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are ignored [16]. This is detrimental to both application developers
who want their notifications to be interacted with, and users who
are interrupted by notifications which are deemed, in hindsight,
unimportant.

Another reason for mobile specific analysis of notifications is
the potential for distraction. This has been previously investigated
within a desktop notification context where it was found that these
notifications increased difficulty when attempting to continue with
tasks once interrupted. In a smartphone context, similar results
were found whereby switching back to an original task after an
interrupting phone call could take up to four times as long. However,
despite their disruptive effects studies have shown that a high
proportion of these disruptive mobile notifications are interacted
with directly by the user.

Impact on user emotion has also been found to correlate with the
reception of specific notification types. Reception of email notifica-
tions was reported to correlate with increased levels of stress and
annoyance [15], however the blocking of these notifications would
increase user habits of phone checking to ensure that nothing of
importance was missed [14].

There are many challenges to acquiring mobile notification data
such as: capturing and interpreting a large number of mobile sen-
sory data points; capturing notification content in an unobtrusive,
holistic and resource-sensitive manner; and privacy concerns sur-
rounding the collection and storage of sensitive user notification
data. Current systems for managing mobile notifications are in-
sufficient at dealing with these issues. OS level control provides
management on a per-app basis, although it does not offer an in-
telligent solution for managing notifications by their content or
context. Do-not-disturb mode or direct reduction in delivery of
notifications is also not viable as it would increase mobile phone
interactions due to user FOMO (Fear Of Missing Out)[17]. App
developers are also implementing their own intelligent notifica-
tion delivery systems, however these are unable to utilize the full
variety of data available to mobile devices without requesting ap-
plication access to privacy-sensitive data from sensors and other
sources. App developers can also be biased toward maximising the
Click-Through-Rate (CTR) of notifications, which results in user
engagement data being exploited for commercial gain as opposed
to being used to curate healthier digital experiences.

A NMS was designed by Corno, et al. [1] to manage the delivery
of notifications for a variety of IoT devices and aimed to avoid
the same notification being read by the user on multiple devices.
While this system was not designed exclusively for mobile devices,
it does demonstrate many of the same design principles used when
creating a mobile NMS such as decisions on notification delivery
time, differentmethods of notification delivery, and the use of device
sensors as input features for the system.

PrefMiner [12] was designed by Mehrotra, et al. to automatically
create rules for notification delivery from user interaction with no-
tifications. The system was also designed to implement its machine
learning in a human interpretable manner by labelling the rules
with the most common keywords of the relevant notifications. This
system determines the best time for delivery but can also block
low priority or low interaction notifications. In order to avoid the
blocking of reminders such as calendar events which receive no

user interaction, these reminder notifications are identified and sep-
arated from the rest of the data set. One possible difficulty is that it
can be difficult to identify which notifications are reminder notifi-
cations for a new generic application. The remaining non-reminder
notifications are clustered via unsupervised learning based on their
titles and association rules are created based on features such as
user response to the notification, arrival time and location. During
the 15-day implementation of the system, 179 rules were suggested
to the participants out of which 102 rules were accepted. One of
the downsides of this system is the requirement for high levels of
direct user interaction.

An off-device supervised classification system developed by Prad-
han et al. [16] was designed to determine notification importance
using both direct collection of notification importance to users and
a more passive monitoring of user notification interaction. A variety
of different supervised learning systems were used and analyzed,
finding that support vector machines were the slowest implemen-
tation and decision trees were the fastest while maintaining good
prediction quality. The overall precision, accuracy and recall of the
systems were over 87%.

In contrast, a NMS designed by Huang and Kao [8] focused
on increasing the CTR of advertising notifications, as opposed to
improving user experience with mobile notifications. The system
performs this by filtering out unwanted advertising notifications
and by raising notifications about the smartphone condition such
as phone temperature to prompt the user to open the notification
drawer more often and view more advertising focused notifications.
The system takes notification feature data and sends it to a remote
server for processing by a deep neural network (DNN). Due to
the mixture of a DNN implementation and a large feature space
used, the system cannot be deployed on-device for mobile. This
raises privacy concerns since highly sensitive mobile data is being
uploaded to a remote server and there is difficulty in determining
whethermobile data leaving a smartphone is being sent tomalicious
applications. This system resulted in increased app retention by
around 2%-2.7%, a reduction in the number of notifications raised
to the user and an increased CTR of notifications.

In summary, state-of-the-art NMSs primarily use supervised
learning algorithms trained on notification data collected from
users after first developing and executing in-the-wild data collection
studies. In contrast, this paper discusses an unsupervised learning
approach toward mobile notification management and the use of
synthetic notification data sets for efficient initial NMS training
and evaluation. Results are then compared using real data sets and
conclusions are drawn regarding the utility of the method.

3 REINFORCEMENT LEARNING FOR MOBILE
NOTIFICATION MANAGEMENT

The goal of a NMS is to deliver notifications to a user in the correct
context so as to maximise the engagement of, and usefulness for,
the user. To put this in the context of a Reinforcement Learning
problem, a state is defined by the current context of the user and
the features of an incoming notification. An action is defined as the
user’s engagement with the delivered notification, open or dismiss.
As future notifications to be delivered cannot be determined based
on a current action and state, a model-free algorithm is required.
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Three different model-free RL algorithms were considered for im-
plementing a NMS. These were Monte Carlo, Temporal Difference
(TD) and Q-learning. Of these three, Q-learning was chosen due to
Monte Carlo’s relative computational inefficiency and possibility
of missing certain notifications in the data set, and TD’s stronger
dependence on state order which introduces an extra system pa-
rameter to monitor. An implementation of Deep Q-learning was
also created for comparison.

3.1 States, Actions and Rewards
Following a Markov Decision Process model, the states for the Q-
learning and DQN agents were the different possible combinations
of feature values from the notification. The actions were whether
the user engaged with the notification. The reward values were
determined by whether the action value predicted by the RL agent
matched the ground-truth action value of that notification present
in the data set.

Figure 1: Visualization of the Q-Table decision process given
state S1

3.2 Q-learning
Q-learning operates by creating a Q-Table where each row corre-
sponds with a possible notification state, and each column corre-
sponds with a possible action. As the agent is trained, Q-values,
which indicate a confidence-level that an action is optimal in a
given state, are represented as a floating-point value in the cell
corresponding to that state’s row and action’s column. When the
trained agent is implemented and given an input state, a look-up is
performed for the corresponding row in the Q-Table, and the col-
umn with the maximum value in that row is the action to perform
as shown in Figure 1.

Each Q-value of the Q-Table correspond to state-action pairs and
are updated according to the 1-step Q-learning algorithm proposed
by Watkins [20], illustrated in equation 1. This updates the value at
a given index,Qt+1, for the Q-Table using the previous value at that
index, Qt , the reward, Rt+1, for taking action a in state s and the
maximum Q-Table value for the next state out of all possible actions
for that state. A learning rate, α , of 0.7 and a discount rate, γ , of
0.618 were chosen for this study as it was found they produced good
results, however both values are open to further experimentation -
hyperparameter tuning will be a focus of future work.

Table 1: Notification and context-relevant features present
in data set.

Feature Explanation

app The mobile application which created
the notification

category The category assigned to the notification
by the notification/app creator

subject The subject inferred using Google’s
Content Classification API

priority The priority assigned to the notification
by the notification/app creator

number-of-updates The number of times the notification
was updated to relay new information

contact significant Whether the contact was significant
relative to the given context

time-of-day The time at which the notification
was created

day-of-week The day on which the notification
was created

Qt+1 ← Qt + α
[
Rt+1 + γ max

a
Q(st+1,a) −Qt )

]
(1)

3.3 Deep Q-learning
AsQ-Tables expandwith the size of the state space, they can become
quite large and inefficient depending on the number of features
and actions inherent to the problem. A Deep Q-learning Network
(DQN) agent was subsequently applied to the problem as a compar-
ison to Q-learning. The DQN replaces the Q-Table in Q-learning
with a Deep Neural Network (DNN). The DNN accepts states as
input, instead of the state-action pairs used for Q-learning, and opti-
mizes its weights based on the Huber Loss [9] function as shown in
equation 2. A clip-delta of 1 was used in this DQN implementation.

L(y, f (x)) =

{
[y − f (x)]2 for |y − f (x)| ≤ δ ,

2δ |y − f (x)| − δ2 otherwise. (2)

3.4 Data
The notification data used for this work was collected during an
in-the-wild study of mobile notification-engagements of 15 users
[5, 6]. The WeAreUs app was used to capture both notification and
user-context features. The original data set contains data points
on over 30,000 notifications, 4,940 smartphone usage logs and 291
questionnaires.

A synthetic notification data set was subsequently created using
the WeAreUs data as seed to a Generative Adversarial Network
(GAN). The generator of the GANwas trained to output data match-
ing that of the original data set, thus creating a synthetic data set
which could be freely shared and used for training intelligent sys-
tems.

In this work, the synthetic data set is used to train two RL agents
on the problem of notification management in order to evaluate the
potential of using synthetic data in place of real data for enhancing
the privacy of the user. This method also facilitates the ability to
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freely share data sets which would otherwise be too sensitive to dis-
tribute, such as notifications, within the wider research community,
better enabling benchmarking, reproducibility and replicability of
results. An explanation of the features present in the data set can
be found in Table 1. Note that not all features present were used
for predicting notification engagements. Constraints due to size of
state space will be discussed further in the following sections. The
synthetic data used for experimentation in this work can be found
in the Github repository of Gym-push [2].

3.5 Gym
OpenAI Gym is an open source interface to Reinforcement Learning
(RL) tasks. It provides environments for researchers to benchmark
RL agents on simulations of real-world problems. Gym-push [2] is a
custom OpenAI Gym environment developed specifically for train-
ing and evaluating agents attempting to better manage notification
on behalf of smartphone users. The environment simulates push-
notifications arriving to a user’s device, the context in which the
user receives the notification and the subsequent reward received
for engagements made by the user. Notif, created for this work, has
been added as an environment of Gym-push and is freely avail-
able to the research community for training RL agents to manage
notifications.

4 EXPERIMENTATION
In order to gauge the ability of the proposed RL agents applied to
Mobile Notification Management, the RL agents were first trained
using the synthetic data of an individual user and evaluated using a
number of metrics. The same RL agents were then trained using real
data from the same individual and evaluated using the samemetrics,
for comparable results. To further assess the utility of synthetic
data, the RL agents were subsequently trained using synthetic data
and evaluated on real data. Finally, the method of training and
evaluating the RL agents was expanded to include multiple users
to ascertain if performance results achieved on the individual user
could be extrapolated.

4.1 Set-up
Both RL agents were evaluated using the OpenAI Gym environment,
Notif, found in Gym-push. The data sets used for training, validation
and evaluation purposes were loaded into the environment which
would then simulate the real-world delivery of notifications paired
with the transitioning contexts of the user. The data sets used were
all derived from the WeAreUs study and are as follows:

(1) Individual User (Synth & Balanced) - This data set is com-
prised of 6,075 synthetic notifications generated from origi-
nal notification data collected from an individual user in the
WeAreUs study. For training and testing purposes the data set
was split into the following sample sizes and balanced (process
outlined below) 50, 100, 250, 500, 1000, 2500, 5000.

(2) Individual User (Real & Balanced) - This data set is comprised
of 6,075 original notifications collected from the same individ-
ual in the WeAreUs study. This data was balanced and split
into the same number of sample sizes as above.

(3) Individual User (Real & Unbalanced) - This data set is identical
to above, but not balanced in order to evaluate performance in
a real-world context where balancing may not be possible.

(4) Multiple Users (Real & Unbalanced) - This data set is com-
prised of 1000 original notifications collected from multiple
users in the WeAreUs study. For the same purposes, this data
was also not balanced.

4.1.1 Evaluation Metrics. To evaluate the performance of both RL
agents, 10-fold cross validation was implemented and the follow-
ing metrics were calculated given subsequent agent predictions of
whether a notification would be opened or dismissed by the user:
precision, accuracy, recall and F1 score. These metrics were measured
for each k-step in the 10-fold cross validation evaluation and were
averaged across the 10 k-steps. For evaluating the computational
performance of the RL agents, the time taken for the agents to fully
train and be evaluated were also measured. Information regarding
the agents training process was also recorded in the change of the
epsilon value and percentage training reward for each episode in
the training process. The percentage training reward shows which
percent of the training notifications were predicted correctly dur-
ing the agents training process and is evaluated as the number of
positive reward signals in that episode divided by the total num-
ber of notification states used in that episode. The epsilon value
corresponds approximately to the percentage of actions taken by
the agent which are chosen randomly instead of using the learned
preferred action.

4.1.2 Data Preprocessing. A common trend found in studies of
mobile notification interaction is that the majority of notifications
are usually dismissed by the user with a small sample being opened.
This results in significant class imbalance in the data. Two methods
of dealing with class imbalance are oversampling or undersampling.
Oversampling operates by generating extra data of the underrep-
resented class in order to have a class balanced data set. Under-
sampling reduces the number of samples of the over-represented
class. As this work already relies upon synthetically generated data,
oversampling would result in the data set being less representative
of the true population from which it originated. Conversely, under-
sampling, which was the method chosen in this work, exploits the
benefit of using synthetic data as additional data can be generated
until a class-balanced data set of required size is achieved. The end
result of this is a synthetic data set with approximately the same
number of notifications opened as there are dismissed. Real data
was also used in some of the experiments for comparison purposes.
In those cases, undersampling was used to achieve balance unless
otherwise stated. However, undersampling would not be used in
practice to balance data sets since there is generally a low amount
of notification data available and the RL agents would want to max-
imise its utilization. This is a key problem area that the synthetic
data generation process can address.

4.2 Evaluating RL agents with synthetic data
In this section, the RL agents were trained and evaluated upon
the Individual User (Synth & Balanced) data set. Unless otherwise
stated, the set of notification features exploited by both agents for
predicting open/dismiss actions were { app, category, time-of-day }.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Evaluation of RL agent performance with synthetic notification data

4.2.1 Size of data set. The analysis of performance versus data
set size is an important factor as it corresponds to the number of
notifications required by the agents to start achieving a high level
of classification performance. Note that the data set sizes shown
are the sizes of the overall notification data set used in the 10-fold
cross-validation. As a result, the training and testing set sizes are
90% and 10% of the overall data set size respectively. Figure 2a
illustrates how precision, accuracy, recall and F1 score are affected
by the number of notifications used by the Q-learning agent and
Figure 2d illustrates the same for the DQN agent.

For data set sizes below 500 notifications, there were lower val-
ues for all metrics in both agents. In particular, the DQN agent had
very low recall and F1 Score values which indicates that for low
numbers of training notifications, the DQN agent was predisposed
towards simply dismissing most notifications when implemented.
The performance of both agents saturate from 500 to 2500 notifica-
tions after which an increase in the metrics of recall, F1 Score and
accuracy occurs for a data set size of 5000. For 5000 notifications,
the Q-learning agent displays a high accuracy of 76.5%, a very high
recall value of 85.8% and high F1 score of 78.2%. The DQN agent

showed comparably better results with an accuracy of 79.1%, a
recall of 90.1% and an F1 score of 81.0%.

4.2.2 Time to train. The training times were measured for both
agents to give an indication of how the computational performance
changed with the size of the notification data set used. Figures 2b
and 2e illustrate a linear relationship between the size of the no-
tification data set and the time taken to train the Q-learning and
DQN agents respectively. The training time for the DQN agent
was approximately twice as long as the Q-learning agent. Testing
times were also analysed for both agents with the Q-learning agent
executing ≈40 times faster than the DQN agent.

4.2.3 Size of state space. To ascertain if the number of features
used to define the notification states had an impact on the RL
agent performance, different numbers of features were chosen for
evaluation, illustrated in Table 2. An overall data set size of 1000
notificationswas chosen for evaluating each of the following feature
state spaces.
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Figure 3: Evaluation of RL agent performance with real notification data

Table 2: Number of features used and the corresponding size
of notification state space

# Features Feature Types State Space Size

4
app, category,
time-of-day,
day-of-week

2240

3 app, category,
time-of-day 320

2 app, category 80
1 app 16

Figures 2c and 2f illustrate the precision, accuracy, recall and
F1 score values across the differing state spaces for both the Q-
learning and DQN agents respectively. For the Q-learning agent,
there were improvements in all metrics except recall as the number
of features increased. It was also found the standard deviation
across k-steps also decreased as more features were used leading
to more consistent performance of the agent. By contrast, for the
DQN agent, the F1 score value changed very little between different
state space sizes. Instead there was a convergence of metric values
as the state space grew with an initially high recall above 87.5% and
lower precision below 70% which converge to values between 75%
to 80% as the state space increased in size. The standard deviation
values for the DQN metrics were found to be very low for all state
spaces.

4.2.4 Feature performance. The Q-learning agent was also anal-
ysed for performance when using just one feature to define the
notification state space. This analysis took place to identify which
features were more effective for defining the notification state space
for increased prediction performance. Each of the four feature types
{app, category, time-of-day, day-of-week} were used independently
and the agent performance was measured for each. A data set size
of 1000 synthetic notifications was used for these measurements.

Figure 2g illustrates that the app and day-of-week features showed
the best performance with F1 scores ≈65-70%. The time-of-day fea-
ture showed slightly worse performance with metrics approximat-
ing 60%, while category resulted in an F1 score below 40%.

4.2.5 Agent training metrics. Figures 2h and 2i depict the epsilon
and percentage reward values during the training process of the
Q-learning agent when a small and large data set are used. These
metrics were taken for each episode of the 1000 training episodes
used. They were measured to give insight into the training process
of an RL agent and how these values change with data set size. By
comparing the 50 notification data set size results with those of
the 5000 data set size, a decrease in variation of training reward
between training episodes can be identified. This supports the hy-
pothesis that by using a larger training data set, the results are more
representative of the overall data set.
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4.3 Evaluating RL agents with real data
In this section, the RL agents were trained and tested upon the Indi-
vidual User (Real & Balanced) data set. Unless otherwise stated, the
set of notification features exploited by both agents for predicting
open/dismiss actions were { app, category, time-of-day }.

4.3.1 Size of data set. Figure 3 illustrates the precision, accuracy,
recall and F1 score of both agents taskedwith predicting notification
actions using different real data set sizes. Compared with results
of synthetic data discussed in section 4.2.1, it can be seen that
the agents perform slightly worse on the real data. The F1 score
values of the Q-learning agent are below 50% starting out compared
to its synthetic counterpart which begins at close to 60% on the
smaller data sets. The max F1 score value of the Q-learning agent,
occurring at the 5000 data set size mark, is also less impressive when
evaluated on real data, ≈75% compared with the synthetic value
of ≈80%. A suggested reason for the higher performance in agents
using synthetic data is that the synthetic data is less nuanced and
diverse than the real data, hence the complexity of the classification
problem is reduced. The relatively low difference between max F1
score values however, suggests that synthetic data could be a viable
solution for training intelligent agents when real data is difficult
to extract and exploit. The DQN agent exemplifies this point, with
a max F1 score value of ≈80% using a data set size of 5000 in both
real and synthetic cases.

4.3.2 Size of state space. Similar to the analysis of section 4.2.3, this
section attempts to identify if the number of features used to define
the notification states has an impact on the RL agent performance
when using real data. The number of features and corresponding
size of states are illustrated in Table 3. Note that compared with
section 4.2.3, the number of state sizes has increased even though
the number of features are identical. This is due to the synthetic
data not fully capturing all features present in the original data set
and highlights the current limitation of the synthetic generation
process to fully represent the original seed data.

In contrast to agent performance using synthetic data discussed
in section 4.2.3, increasing the state space size actually reduces the
performance of agents when applied to real data. Figure 3 illustrates
the F1 score of both agents over differing state space sizes. The
Q-learning has a max value of 74% when using 3 features, but drops
to 64% when using 4 features, which is lower than using just 1
feature alone. Similarly the DQN agent reaches peak performance
using just 2 features before a slight drop in performance leads to
saturation at 65%, again lower than using just the app feature for
representing the notification state.

4.3.3 Feature performance. As with section 4.2.4, the Q-learning
agent was again used for identifying feature importance in predict-
ing a user action toward notifications. Interestingly, when applied
to real data, the app feature performs best with values greater than
70% across all metrics. The category feature, which previously per-
formed worst, is now the next best predictor of user action after
the app. This again highlights the need for improving the synthetic
generation process to facilitate all feature values present in the
original data. The results are illustrated in Figure 5.

Table 3: Number of features used and the corresponding size
of notification state space

# Features Feature Types State Space Size

4
app, category,
time-of-day,
day-of-week

17136

3 app, category,
time-of-day 2448

2 app, category 612
1 app 51

4.4 Train on Synthetic, Test on Real evaluation
of RL agents

In this section, the RL agents were trained upon the Individual
User (Synth & Balanced) data set and tested upon the Individual
User (Real & Unbalanced) data set. This method of Training on
Synthetic and Testing on Real (TSTR), was used to ascertainwhether
synthetic notification data could be used in place of real data to
predict user actions with respect to incoming notifications. The
set of notification features exploited by both agents for predicting
open/dismiss actions were { app, category, time-of-day }.

4.4.1 Size of data set. Similar to sections 4.2.1 and 4.3.1, both agents
were trained and evaluated using different sized notification data
sets. However, in contrast to previous sections, the test data re-
mained fixed at 1000 notifications and was made up of real notifi-
cation data. The agents were trained using the synthetic data sets
of varying sizes and, because of this, the models, during testing,
were exposed to states which were not present during training.
Future work will explore how entity embedding may aid in map-
ping unseen states to similar, trained states, but for the purposes of
this work and evaluating performance of the RL agents, a random
action was chosen when unknown states appeared. The results
are illustrated in Figure 4. As expected, the performance of both
the Q-learning and DQN agents drop below previous benchmarks
set in Figures 2 and 3. The initial F1 score of the Q-learning agent
fell just above 20% and achieved a max value of 61% when trained
upon 5000 notifications. The DQN agent had an F1 score below 20%
when trained with 50 notifications and a max value of 63% when
trained on 5000. Both achieved performance levels well above a
random benchmark of 50% which suggests that the agents trained
on synthetic data could be applied in cases where use of real data
is not possible.

4.4.2 Unknown state spaces. The limitations of performance can
also be attributed to the number of unknown cases forcing the
RL agents to take a random action. Figure 4 also illustrates how,
when the number of unknown states is reduced, the performance
of the agent increases and becomes more stable. This occurs with
greater amounts of synthetic data generated and made available
for training. Improving the synthetic generation process such that
all unique feature values get represented in the synthetic training
data would also aid in minimizing the number of unknown states
encountered during testing/deployment in-the-wild.
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Figure 4: RL agent performance when trained using synthetic notification data and evaluated on real notification data (TSTR)

Figure 5: Analysis of feature importance applied to real no-
tification data

4.5 Evaluating RL agents across multiple users
In this section, the RL agents were trained and evaluated upon the
Multiple Users (Real & Unbalanced) data set. The set of notifica-
tion features employed by both agents for predicting open/dismiss
actions were { app, category, time-of-day }.

The results, illustrated in Figure 6, highlight that for different
user personas, performance varies when attempting to predict no-
tification engagement on behalf of the user. As expected, based on
previous results discussed, the DQN agent achieves the maximal F1

score of 76% and improved F1 score values across users 1, 2 and 5
over the Q-learning agent. However, the Q-learning agent shows
higher consistency over all users, highlighted by its improved per-
formance over the DQN agent for users 4 and 6 and its comparable
results across all other users. The size of the training data set, 1000
notifications, may be a contributing factor toward the DQN’s lim-
ited performance for users 4 and 6 as, previously discussed, this
agent performs best on larger data sets while the Q-learning agent
performs well even on limited data.

The user’s CTR is superimposed over the performance of each
agent on each user. As can be seen across users 1 to 3, the perfor-
mance of the RL agents is consistent across differing user engage-
ments. User 3 tends to accept up to 60% of notifications while user
2 tends to dismiss up to 80%. This shows how the RL agents are
successful at learning both types of engagement levels on behalf of
the users.

Through comparison of user 2, who has a low CTR but high F1
score over each agent, and users 4 and 6, who also have low CTR’s
but much lower F1 scores over each agent, it was identified that the
feature distributions for the app, time-of-day and category were
quite different between these users. 90% of notifications for user 2,
for example, had an unknown category, while users’ 4 and 6 had
a much more diverse range of notification categories made up of
email, msg, alarm and calls. Similarly, users’ 4 and 6 received most
notifications throughmessaging and email apps in contrast to user 2
who received mainly weather and alarm notifications. The diversity
of feature values found in users’ 4 and 6 may be an indication of
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Figure 6: Evaluation of RL agent performance withmultiple
real user notification data

why both agents performed worse for these users, due simply to
the complicated range of notification-engagement behaviours they
exhibit over all feature values. However, as there may be a number
of confounding variables at play, identifying if causation is present
is left to future work.

In summary, it can be seen that both agents have the ability to per-
form well over a number of different user notification-engagement
types, with the Q-learning agent being preferred in scenarios of
limited data and the DQN agent when larger data sets are at its
disposal.

5 LIMITATIONS & FUTUREWORK
The work discussed in this paper has a number of associated limi-
tations, including: the small set of users present in the WeAreUs
data set; the restricted set of notification/context features used; and
the fixed hyperparameters of the models. The small set of users
in the WeAreUs study can be attributed to unwillingness of po-
tential participants to have their notifications monitored due to
the the sensitive nature of notification content. Further work will
need to address if and how these concerns can be alleviated to
facilitate the gathering and use of notification and smartphone data
for the purposes of improving push-notification experiences. The
use of generative modeling techniques to create synthetic data is a
potential solution, as discussed in this paper. Additionally, while
supplementing the number of featuresmade available to both agents

would increase the state-space and subsequent computing power
necessary for training, it may also positively impact performance
metrics, as might optimizing the hyperparameters of both models.
Therefore, both tasks are recommended for future evaluation. As
the resources used in these experiments can be found in the Gym-
push repository [2], the research community is invited to work
with us in improving the performance of both agents to facilitate
smarter push-notifications.

6 CONCLUSION
The goal of this work was to design, implement and evaluate a
new method for managing notifications on behalf of users, without
explicit use of their privacy-sensitive data. The solution proposed
by this paper was a Reinforcement Learning approach whereby
two agents were trained upon a synthetic data set generated from a
previous in-the-wild study of mobile push-notifications. The results
from the Q-learning and Deep Q-learning agents were evaluated
using a number of metrics and a custom OpenAI Gym environment.

Findings illustrated that the Reinforcement Learning methods
chosen could predict user engagements toward notifications up to
≈80% of the time when trained and tested upon real and synthetic
data respectively, and up to ≈65% when trained upon synthetic and
evaluated upon real notification-engagement data. These results
compare favourably with current state-of-the-art approaches.
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