
Generation and Evaluation of Personalised Push-Notifications
Kieran Fraser

kieran.fraser@adaptcentre.ie
ADAPT Centre, Trinity College

Dublin, Ireland

Bilal Yousuf
byousuf@scss.tcd.ie

ADAPT Centre, Trinity College
Dublin, Ireland

Owen Conlan
owen.conlan@scss.tcd.ie

ADAPT Centre, Trinity College
Dublin, Ireland

ABSTRACT
A shared challenge in the domain of User Modeling, Adaptation
and Personalisation is proposed for the 2019 EvalUMAP workshop
whereby the evaluation of user models generating personalised
push-notifications is to be explored. As such, this paper presents
a description of the evaluation process, a solution to the first pro-
posed challenge and details the results obtained from the Gym-Push
evaluation environment.

CCS CONCEPTS
• Human-centered computing → User models; Usability test-
ing; • Information systems→ Open source software.

KEYWORDS
evaluation, personalisation, user modeling, push-notifications
ACM Reference Format:
Kieran Fraser, Bilal Yousuf, and Owen Conlan. 2018. Generation and Evalua-
tion of Personalised Push-Notifications. In Woodstock ’18: ACM Symposium
on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The task proposed in the 2019 EvalUMAPwhite paper [6] is the gen-
eration of personalised push-notifications. This use-case is meant
to support the creation and subsequent evaluation of user model-
ing, adaptation and personalisation techniques in a standard way
such that comparisons and benchmarks can be drawn. The task
is comprised of two challenges, both of which provide a data set
from which a personalised model can be created. The data set
consists of a number of synthetic and contextual smartphone and
push-notification features derived from a 3 month long in-situ
smartphone usage study. This paper will focus on Challenge 1.

1.1 Challenge 1
1.1.1 Description. Three months of contextual push-notification
data was provided from a number of distinct users. The goal of
the challenge was to create a user model capable of generating
personalised push-notifications, given a particular context such as
the place or activity of the user. The applicability of this challenge
to the real world is quite tangible as actionable AI is moving ever

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

closer to edge technologies, such as the mobile device. Subsequently,
a user model created for a challenge such as this could be adapted
to create personalised push-notifications, in real-time, on a user’s
device instead of being created and pushed by application owner’s
in the cloud.

1.1.2 Evaluation. The performance of the model is evaluated us-
ing a custom OpenAI Gym [1] environment, Gym-Push [3], which
contains an additional three months data on which the user model
is evaluated. Evaluation is achieved by installing Gym-Push and
querying the push_eval_1-vX environment for a user’s context data.
The context data can then be fed into a user model to generate
personalised push-notifications dependent on the context. These
newly generated notifications are then passed back to the gym
environment via the testNotifications() method which begins the
evaluation of the model output.

1.1.3 Metrics. The metrics used in the evaluation of Challenge
1 are performance and response time. The performance metric de-
scribes the degree of notification engagement improvement over
original notifications pushed at a user. The response time metric
describes how long it takes for a model to generate a set of notifi-
cations given the context as seed, as a real world use of this task
would be to generate notifications in real-time. The implementation
of these metrics are further outlined in following sections.

2 METHOD
The method proposed by this paper for Challenge 1 is to use a Con-
ditional Generative Adversarial Network (GAN) [2] to learn a user’s
habits with regard their notification engagements with respect to
differing contexts. GAN’s are a set of neural networks which can
be used for generating synthetic data which mimics the real world
data used to train it. The GAN is made up of a generator and dis-
criminator network. The generator takes random noise as input
and outputs a notification. The discriminator network alternates
between a real notification sample and a synthetic notification sam-
ple as input and as output indicates if the notification is synthetic
or not. When trained together, both networks attempt to better the
other - the discriminator always trying to correctly categorize a
notification as synthetic or real and the generator always trying to
pass off synthetic samples as real samples. Ideally, the cross-entropy
loss of both the discriminator and generator should converge such
that the generator produces sufficiently real notification samples
which cannot be deciphered as synthetic by the discriminator.

3 NOTIFICATION PERSONALISATION
Personalised push-notifications were generated for each user using
a Conditional Wasserstein GAN. The context data features were
used as the condition on which to train the GAN. This enabled the
creation of a generative model which could take as input, a number

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

Table 1: Comparison of original (real) notifications and per-
sonalised (synth) notifications generated for first 5 users.

Total
Notifications

Unique
Apps

Unique
Subjects

User
Id Real Synth Real Synth Real Synth

1 6963 7404 23 8 12 1
2 1632 1666 8 3 6 2
3 3245 3237 3 1 4 1
4 1959 1771 8 4 2 1
5 5031 5591 12 4 17 2

of contextual features, and produce a push-notification as output.
The action of the notification taken by the user was also added as
a conditional feature which allowed for the additional option of
generating only notifications which were habitually opened by the
user in the given context, thus ensuring the notifications generated
were items which the user was receptive to.

3.0.1 Implementation. A Multilayer Perceptron (MLP) was used
for both generator and discriminator. The dimension of input used
for the generator was 10 and latent space values were sampled from
a uniform distribution. The notifications were encoded (one-hot)
into multidimensional vectors of length 28 and used as input for the
discriminator. The networks were trained using Root Mean Square
Propogation (RMSProp) in 128mini-batch chunks over 2000 epochs.

For each user in the training data provided in Challenge 1, a
generative model was created using 3 months of their notification
engagement data. Once trained, the Gym-Push environment was
queried for context. The context was used to seed the generation
of a further 3 months of notification engagement data (Table 1),
which was passed back to the environment for evaluation.

4 EVALUATION
The performance of the personalised notifications was calculated by
training a classifier to take the place of the user and act (open/dismiss)
upon the newly generated personalised notifications. Each classi-
fier was trained on 3 months of historical user notification engage-
ments. Scikit-learn’s [5] implementation of the AdaBoost classifier
was used in this case. The Click Through Rate (CTR) was used as
the performance metric of choice as it is an industry standard for
measuring notification engagement performance. The CTR is the
number of opened notifications over the total number of notifica-
tions pushed at the user. Figure 1 highlights the performance of
the personalised notifications compared with the original actions
taken by the user and also compared with the actions predicted by
the classifier for the original notifications (which is mimicking the
user). Discrepancies in performance between the original and clas-
sifier actions are expected, as when trained, the user classifiers do
not reach 100% accuracy in mimicking the user. More importantly
however, the personalised notifications result in higher CTR’s in 6
of the 10 users and in some cases (e.g. user 1), surpass the CTR of
original actions taken by the user.

The response time of the model is defined as the time taken for
the model to generate the personalised notifications of a user, given

Figure 1:
Left: Comparison of results: 1) Original: CTR of original no-
tifications taken by real user; 2) Synth Human: CTR of orig-
inal notifications acted upon by classifier; 3) Personalised:
CTR of personalised notifications acted upon by classifier.
Right: Response time of the model. The time taken for per-
sonalised notifications to be generated.

the contextual data. The Gym-Push environment calculates the
time from when a user’s contextual data is queried to when the
test method is called. Figure 1 illustrates the response time of the
model for each user. Naturally user models with higher quantities of
notification training data take longer to respond with personalised
notifications as the GAN trains over a larger corpus. This provides a
good benchmark onwhich to compare the efficiency of othermodels
with respect to the real-time notification generation problem.

5 LIMITATIONS & FUTUREWORK
The evaluation of the personalised models is limited as an imperfect
classifier is replacing a human in the evaluation of the personalised
notifications. It does however, provide an intermediate interface
through which performance benchmarks can be set and models
tested against before carrying out in-situ studies. Additional metrics
will be explored for use in future evaluations, such as: diversity,
coverage, novelty and serendipity [4]. Additional synthetic data
sets will also be added to the Gym-Push environment for both the
Personalisation and Reinforcement Learning communities.

ACKNOWLEDGMENTS
This research is supported by the ADAPT Centre for Digital Con-
tent Technology under the SFI Research Centre Program (Grant
13/RC/2106) and is co-funded under the European Regional Devel-
opment Fund.

REFERENCES
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, andWojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540
[2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. 2017. Improved training of wasserstein gans. In Advances in Neural
Information Processing Systems. 5767–5777.

[3] Gym-Push 2019. A custom OpenAI Gym environment. Retrieved March 20, 2019
from https://github.com/kieranfraser/gym-push

[4] Marius Kaminskas and Derek Bridge. 2016. Diversity, Serendipity, Novelty, and
Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives in
Recommender Systems. ACM Trans. Interact. Intell. Syst. 7, 1, Article 2 (Dec. 2016),
42 pages. https://doi.org/10.1145/2926720

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[6] Proposal for a Shared Challenge in the UMAP Space 2019. Adapt, EvalUMAP 2019.
Retrieved March 20, 2019 from http://evalumap.adaptcentre.ie/

http://arxiv.org/abs/arXiv:1606.01540
https://github.com/kieranfraser/gym-push
https://doi.org/10.1145/2926720
http://evalumap.adaptcentre.ie/

	Abstract
	1 Introduction
	1.1 Challenge 1

	2 Method
	3 Notification Personalisation
	4 Evaluation
	5 Limitations & Future Work
	Acknowledgments
	References

